Research Interests
The King Lab at the University of Chicago seeks to uncover how interfaces and nanoscale material heterogeneity determine the ultrafast dynamics, properties, and functionality of materials. Interfaces and boundaries between materials, phases, and structural motifs influences material suitability for applications such as photovoltaics or light emitting diodes and can fundamentally change chemical reactivity at surfaces and through mechanisms of heterogeneous catalysis. The King Lab is a leader in developing new methodologies for probing spatial heterogeneity and interfaces in materials and using cutting edge techniques to elucidate the interplay between intrinsic and defect-mediated material dynamics. Our work has been extended to unveil new ways that imaging techniques pioneered for solid-state materials have the potential to revolutionize ultrastructural biology and neuroscience.
Selected Publications
Arcidiacono, C. R. Johnston, C. L. Keenan, N. Mirzajani, A. Ghosh, A. S. Filatov, S. B. King, Functionalization of Monolayer MoS2 with Layered Multimolecular Architectures, ACS Appl. Opt. Mater., In Press (2024)
Ghosh, J. L. Spellberg, S. B. King, Polarization-dependent photoemission electron microscopy: new ways to image domains in inorganic and molecular materials, J. Chem. Phys., In Press (2024)
R. Li, G. Wildenberg, K. Boergens, Y. Yang, K. Weber, J. Rieber, A. Arcidiacono, R. Klie, N. Kasthuri, S. B. King§, Contrast Mechanism of Osmium Staining in Electron Microscopy of Biological Tissues. ChemBioChem, e202400311 (2024)
J. L. Spellberg, L. Kodaimati, P. P. Joshi, N. Mirzajani, L. Liang, S. B. King§, Electronic structure orientation as a map of in-plane antiferroelectricity in β′-In2Se3. Sci. Adv. 10, eado2136 (2024).
N. Mirzajani*, C. L. Keenan*, S. R. Melton, S. B. King, Accurate phase detection in time-domain heterodyne SFG spectroscopy. Opt. Express 30, 39162 (2022).
P. P. Joshi*, R. Li*, J. L. Spellberg, L. Liang, S. B. King, Nanoimaging of the Edge-Dependent Optical Polarization Anisotropy of Black Phosphorus. Nano Lett 22, 3180–3186 (2022).
S. B. King, K. Broch, A. Demling, and J. Stähler, “Multistep and multiscale electron transfer and localization dynamics at a model electrolyte/metal interface.” J. Chem. Phys. 150, 041702 (2019)
S. B. King, D. Wegkamp, C. Richter, M. Wolf, and J. Stähler, “Trapped Electrons at the Amorphous Solid Water/Vacuum Interface as Possible Reactants in a Water Splitting Reaction.” J. Phys. Chem. C 121, 7379-7386 (2017)
A. B. Stephansen, S. B. King, Y. Yokoi, Y. Minoshima, W. Li, A. Kunin, T. Takayanagi and D. M. Neumark, “Dynamics of dipole- and valence-bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation.” J. Chem. Phys. 143, 104308 (2015)
S. B. King, A. B. Stephansen, Y. Yokoi, M. A. Yandell, A. Kunin, T. Takayanagi and D. M. Neumark, “Electron accommodation dynamics in the DNA base thymine.” J. Chem. Phys. 143, 024312 (2015)
S. B. King, M. A. Yandell, A. B. Stephansen and D. M. Neumark, “Time-resolved radiation chemistry: dynamics of electron attachment to uracil following UV excitation of iodide-uracil complexes.” J. Chem. Phys. 141, 224310 (2014)
M. A. Yandell, S. B. King and D. M. Neumark, “Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer.” J. Chem. Phys. 140, 184317 (2014)
S. B. King, M. A. Yandell and D. M. Neumark, “Time-resolved imaging of the iodide-thymine and iodide-uracil binary cluster systems.” Farad. Disc. 163, 59 (2013)
M. A. Yandell, S. B. King and D. M. Neumark, “Time-Resolved Radiation Chemistry: Photoelectron Imaging of Transient Negative Ions of Nucleobases.” J. Am. Chem. Soc. 135, 2128 (2013)